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ABSTRACT 

The p r a c t i c a l i t y  of t h e  Fir s t -Order -Per t u r  bat  ion- I  ter a t i on- 

Method (FOPM) is appraised. After t he  f i r s t  i t e r a t i o n ,  t he  

expec ta t ion  value of the energy is given by a non-analytic funct ion 

of the per tu rba t ion  parameter 3 . The asymptotic expansion of 

t h i s  func t ion  gives  the energy accura te ly  up t o  O( A'). 

convergence of t he  asymptotic expansions is  discussed.  

examples are  considered: a perturbed ground s t a t e  hydrogen atom, 

The 

Two 

and a perturbed ground state l inear  harmonic o s c i l l a t o r .  
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The F i r s t  -Order -Perturbation- Iteration-Me thod (FOPIM) f o r  

192 s o lv ing  t ime - independent quantum mec hani  ca 1 pro b lems 

c a r e f u l  s c ru t iny .  After t h e  n-th i t e r a t i o n  t h e  expec ta t ion  value 

of t h e  energy i s  given by a complicated non-analyt ic  func t ion  of 

t h e  pe r tu rba t ion  parameter 8 which may be expanded i n  an asymptotic 

r equi r  e s 

series in h a c c ~ r s t e  UP to  terns of the order of x r a i ~ d  to 

t h e  2*' power. Thus, FOPIM requ i re s  the s o l u t i o n  of fewer 

d i f f e r e n t i a l  equations t o  obtain high p r e c i s i o n  than would be 

r equ i r ed  by other procedures. However, t h e  method is not easy t o  

apply. 

soon become i n t r a c t a b l e ,  and numerical techniques are requi red  for  

f u r t h e r  progress.  

The i n t e g r a t i o n s  and the d i f  f e r e n t i a 1  equations involved 

The d i f f i c u l t i e s  are i l l u s t r a t e d  by two r a t h e r  

t r i v i a l  examples: (1). A ground s ta te  hydrogen atom perturbed by 

a small a d d i t i o n a l  charge a t  the nucleus, and (2). A ground state 

l i n e a r  harmonic o s c i l l a t o r  perturbed by an add i t iona l  quadra t ic  

p o t e n t i a l .  

t he  r e l e v a n t  theory and a l s o  consider the question of t he  convergence 

of t h e  i t e r a t e d  pe r tu rba t ion  s e r i e s .  

Before proceeding with t h e  examples, we  b r i e f l y  r e c a l l  

11. T!IEORY 

W e  start wi th  the  usua l  Bayleigh-Schrgdinger pe r tu rba t ion  

theory for non-degenerate s t a t e s .  L e t  ho be t h e  unperturbed 

Hamiltonian which has 

e igenfunct ion  for  t he  s t a t e  under cons idera t ion .  

Hamiltonian i s  

6, and % as i t s  eigenvalue and normalized 

The perturbed 

H 
hO 

+ 
0 

A V  

1 
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We seek the perturbed energy 

9 (A) . If E and are a n a l y t i c a l  func t ions  of , 
E( h ) and t h e  per turbed e igenfunct ion  

The f i r s t  three co r rec t ions  t o  the  energy can be expressed2 i n  

terms of vo , “yo , and yo (1) 
> 

Here vo(’) s a t i s f i e s  t he  equat ion  

In &he usual s i t u a t i o n  where ho c o n s i s t s  of a k i n e t i c  energy 

i t  i s  convenient operator  T p lus  a p o t e n t i a l  energy func t ion  u 0 ’  



' .  

t , 

. 

9 .  

3 

to let *yo = Fo 'yo where Fo i s  a func t ion  of the  coordinates .  

Then Eq. (7) reduces t o  

This is a d i f f e r e n t i a i  equation for 

be solved by quadrature i n  one-dimensional or separable  mul t i -  

Fo which can, i n  p r inc ip l e ,  

dtntensional problems. Thus, there is a f a i r l y  clear-cut way of 

der iv ing  9 and the  energy up t o  terms of t he  order of 'h . 4 
0 

The bas ic  i d e a  of FOP% is t o  i t e r a t e  t he  pe r tu rba t ion  procedure 

s t a r t i n g  with t h e  improved unperturbed eigenfunct ion 

where N is the normalization f ac to r  

+ 
Actually,  Eq. (8) only determines Fo up t o  an add i t ive  

constant  C If i s  the (asymptot ical ly)  c o r r e c t  f i r s t -  

order func t ion  fo r  which 

from 

then one may wr i t e  for  the f i r s t  i t e r a t e d  wave func t ion  

0 

< yo ,v:')> = 0 and Y/o(l) 'differs 

0 '  by 6 c 5 t h a t  i s ,  i n  a d i f f e r e n t  choice of C % 



Thus vi 
not  equiva len t  t o  a l t e r i n g  a m u l t i p l i c a t i v e  normalizat ion cons tan t .  

i s  no t  The energy expec ta t ion  va lue  

a f f ec t ed  by the  choice of Co up t o  terms of b( A ) . Furthermore, 

i f  v/ is  t h e  normalized func t ion  obtained a f t e r  t h e  f i r s t  

i t e r a t i o n ,  the  energy 

by the  choice of Co up t o  terms of O (  a*). Thus, for  our 

purposes, the  choice of  Co i s  immaterial and may be made (as i n  

our f i r s t  example) t o  s impl i fy  the  c a l c u l a t i o n s .  

v e r i f y  t h a t  h l \ Y l  = E 'yl where 

d i f f e r s  from 9, by terms of order A* . This  i s  

E, = < T ,  ff Y ,  
4 

2 

&2 = <% , ff v2> i s  not  a f f ec t ed  

It i s  easy t o  

and 
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Thus the perturbed Hamiltonian can be written i n  the form 

2 
H = hl + a  v1 

where 

2 The A vl( ) now plays the role of a perturbation. Corresponding to  

E q s .  (2) and (31, w e  have the expansions 

The new first-order wave function ( A )  m y  be expressed i n  

the form y l ( l )  ( A )  = F1( h ) v l (  3 
function sat i s fy ing  the equation 

where F l ( a )  i s  a 



& 
6 

(6a) 

Eq. (8a) only determines the  func t ion  

cons tan t  C1 . However, Eqs. (Sa) and (6a) are w r i t t e n  i n  such a 

form t h a t  the  values of 4 ,  (2) and 

va lue  of C1 . 

F1( ) t o  w i th in  an a d d i t i v e  

are independent of the  

I f  the expansion of t h e  energy, Eq.(2a), i s  terminated a f t e r  t he  

third-order  t e r m  

up t o  terms of the order of A . This  i s  the  same accuracy as could 

l6 el ( 3 )  ( 

8 

) , then E( 3 ) should be accura te  

be obtained from t h e  usua l  Rayleigh-Schr Gdinger pe r tu rba t ion  theory 

wi th  the  expansion of t he  wave funct ion,  Eq.(3), t runcated a f t e r  the  

t h i r d  order term y ( 3 )  . The advantage of FOPIM i s  t h a t  t o  

o b t a i n  t h i s  degree of accuracy i t  i s  only necessary t o  solve two 

d i f f e r e n t i a l  equat ions f o r  q0(l) and fo r  *,(')( A )  i n s t ead  of 

t h e  three  d i f f e r e n t i a l  equat ions fo r  9 , , and . 
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In  order t o  obtain higher accuracy, the FOPIM procedure can be 

repeated as  of ten as  required.  

I .  

111. CONVERGENCE. 

3 The theorems of Rellich,  &to, Titchmarsh, and others  enables 

one t o  discuos the convergence of the  Rayleigh-Schradinger energy 

s e r f r ~  Eq.(2) in te+m of the mttiatkai  properties of 

The convergence of the FOPIH energy s e r i e s  Eq.(Pa) is m o r e  d i f f i c u l t  

ho and v . 
0 

(1) hl and v as well as the E ,  , el , e tc . ,  I' t o  as8es8 since 

u e  functions of 'x . An addi t ional  d i f f i c u l t y  arises from 

h2 vl(  3 ) not being a rem.lar per turbat ion i n  the region of 

configuration apace for which f h F o l  1 . I n  t h i s  region, the 

T ~ y l t ~  series expamion i n  powers of A does not converge for the  

factor (1 I= aP0)-' Which occurs In vl( 'A ). No mat te r  how small 

the value? of 

I s  a bounded function (which it  seldom i r ) .  

h , there w t l l  alwaye be euch a region unless Fo 

Very l i t t l e  i s  known 

about the couvergence of 8 perturbation eerie- having such ccnuplica- 

t ione.  However, In tu i t i ve ly ,  one expects t h a t  a given number of 

FOP= energy terms should give a far bet te r  energy than the same 

.-mber of Rayleigh-Schr$dinger energy terms. 

~t t!i,? 

neighborhood of 

for 

the POPM series (2a) with the Rayleigh-Schrgdinger series (2) ae 

E,(') 1s are analyt ic  functions of x i n  some 

a =  0 ( i . e .  If they have convergent Taylor s e r i e s  

!h( less than some fixed A. ), it is  possible  t o  compare 

expansions i n  powers of h . From Eq. (121, it is clear that; Q, 

I s  analy t ic  i n  From Eqs. (4a), (91, and (24) we see tha t  el (1) . 

i 



2 is a l s o  ana ly t i c  s ince  i t  has the  form (ao + al h ) / (bo  + b l h  + b2 X ), 

The behavior of el (2) and 

following grgument shows, w e  cannot expect them t o  be a n a l y t i c  i n  

is  d i f f e r e n t .  Generally,  as the 

any neighborhood of A = 0 , no matter how small the  value of 3 . 
E q s .  (5a) and (6a) express  El (*) and as i n t e g r a l s  

involving vl - F1 v1 . The func t ion  F1 i s  found by 

so lv ing  Eq. (8a). 

real ,  T = - - 

(1) - 

I n  a simple one-dimensional case wi th  

d2/dx2 and F i s  the  i n t e g r a l  of 

yl assumed 

1 2 

Consideration of t h e  f a c t o r s  of (1 + AFo) occurr ing  i n  vl 
and y 

and (1 + AFo)-’ , and thus F1 involves ( 1  + AFo) - l  and 

log 1 1 + AFoI  . The logari thm i s  unpleasant as i t  cannot 

cance l  with any of t he  f a c t o r s  of (1 + A F o )  

t h e  i n t e g r a l s  of  E q s .  (5a) and (6a). 

and 

r eg ion  

i n  powers of 

i n d i c a t e  t h a t  dFl/dx has terms involving (1 + A F o ) - 2  1 

i n  the  numerators i n  

(2) These i n t e g r a t i o n s  for  el 
el  (3)  are taken over a l l  conf igura t ion  space inc luding  the  

1 XFo’{ > 1 i n  which t h e  Taylor series for  log \ 1 + A Fo\ 

does not  converge. It follows t h a t  e,(*) and 

themselves do not  have convergent Taylor series i n  powers 

Y , of i n  any neighborhood of h = 0 i f  F1 , and hence 

contains  log  I 1 + Fo 1 . One would s t i l l  expect E l ( 2 )  and 

t o  have asvmptotic expansions i n  ascending powers of  X,  

s i n c e  the smaller the  value of 

troublesome reg ion  where 1 h F o l  > 1 . But these  asymptotic 

h ,  the  less s i g n i f i c a n t  i s  the  

. I  

4 
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expansions are not convergent f o r  any value of h . 
Thus, it i s  only i n  an asymptotic sense t h a t  one should expect 

t o  compare three or more terms i n  the  FOPIM series Eq.(2a) with the  

Rayleigh-Schrsdinger series Eq. (2). In t h a t  sense, n terms of 

Eq.(2a) should agree with 2x1 terms of Ed.(2). This is  evident 

because of the powers of 3 (rather than a ) which multiply the  2 

terms i n  (2a). Experience with asymptotic perturbation series has 

shovn t h a t  frequently only three or four t e r m s  are relevant before 

the  series must be corrected and terminated. On this account, the  

asser t ions  about agreement of t he  two series (2) and (2a) through 

high powers of 1 must be t en ta t ive  and questionable. 

Conparison of t he  two ser ies ,  Eqs. (3) and (3a), for t he  

perturbed eigenfunction q( h ) is s o l a e t i m e s  possible provided 

t h a t  the norms of the  two series are adjusted t o  be equal through 

the  power of h under consideration. With t h i s  proviso, it is  

evident that, for example, 
2 ql( A 1 + h VI(') ( agrees 

is expandable i n  ascending powers of A, t h a t  i s  when I APo) < 1 . 
I V .  EXAMPLE: THE PERTURBED HYDROGEN ATOH. 

A ground-state hydrogen atom perturbed by the  addi t ion  of a 

charge -Ae a t  t he  nucleus is a simple example which can be used 

to  test our FOPM. 

Wigner , Trees, and Dalgarno t o  test per turba t ion  theories .  I n  

atomic uni t s ,  the  exact solutions are 

This example has previously been used by 
4 5 6 



We start  wi th  the unperturbed wave func t ion  

UI, = T-’ exp(- r )  

corresponding t o  

-1 and f = - f 1. 2 ‘. h = - 5 0  - r 
0 0 

The per turba t ion  p o t e n t i a l  and f i r s t  order energy are 

r: 1 
0 

-1 v = r  and 
0 

It is easy t o  so lve  E q . ( 8  for Fo giving 

= r exp( - 1: Fo = 1: and 

Here t h e  constant  of i n t e g r a t i o n  has been ad jus ted  S Q  as t o  

simplify the FOPIM c a l c u l a t i o n s  r a t h e r  than t o  make 

orthogonal t o  yo . From E q s . ( S )  and (6) w e  f ind  t h a t  

6 Indeed, a s  Dalgarno po in t s  out ,  a l l  of the  subsequent €IJ’ls 

are zero so t h a t  the f i r s t  t h ree  terms of t h e  Rayleigh-Schradinger 



energy series Eq. (2) s u f f i c e  t o  give the  exac t  energy of t h e  

perturbed system, Eq.(16). 

fo r tuna te .  

This f e a t u r e  of the example i s  

I n  accordance wi th  Eq. (91, t he  f i r s t - i t e r a t e d  FOPIM 

normalized "unperturbed" wave func t ion  is 

We note  t h a t  vl( 'x ) agrees wi th  the exac t  wave func t ion  *( A ) 

through the f i r s t - o r d e r  i n  7\ . From Eqs. (12) and (14), 

Using Eq. (4a), it follows tha t  

When I AI  < (7/12)' 4 0.764, t h e  expansion of Eq. (24) i n  

powers of is convergent giving 

So lu t ion  of Eq. (8a) y i e lds  



Here C1 is an a r b i t r a r y  constant  and 

vl i n  Eq. (5a) , we f ind  a f t e r  some 
F1 

s e t t i n g  Yl (1) = 

90 
-X - in terms of the  exponent ia l  i n t e g r a l  Ei*( t )  = (e /x) dx  . 

I f  3. is negat ive so  t h a t  the integrand of I (  x )  has a 

s i n g u l a r i t y  a t  the  poin t  r = - l /?t  , then we must use the  

Cauchy p r i n c i p l e  value of Ei*(2/X ). The asymptotic expansion 

pf I(  'h ) i n  ascending powers of h i s  
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Expanding Eq. (28) with  t h e  use of Eq. ( 3 0 ) ,  w e  ob ta in  t h e  

asymptotic expansion 

Thus, from E q s .  (23), (25), and (31), it follows t h a t  

This illustrates the  asymptotic agreement of t he  f i r s t  t h r e e  terms 

of t h e  FOPIM series (2a) w i t h  t h e  f i r s t  t e r m s  of t he  Rayleigh- 

Schr8dinger series (2). Using Eq. (6a), we could evaluate E 1 ( 3 ) ( h )  

but  t h e  i n t e g r a t i o n s  would be very  lengthy. 

s i m i l a r  t o  (but more complicated than) t h a t  f o r  

new f e a t u r e s  would emerge. We would expect t o  f i n d  

W e  should ge t  a r e s u l t  

h )  and no 

The unnormalized f i r s t - o r d e r  co r rec t ed  f i r s t - i t e r a t e d  

eigenfunct ion is Yl + h2 yl(l) = (1  + X2 F1) yl . 
Here vl 
When 

is  given by Eq. (22) and F1 i s  given by Eq. (26 ) .  

1 a r  1 < 1 , t he  logarithm terms may be expanded so t h a t  



1 . 2  ( I - l - 3 h $ - 1 h Z )  
2 

c 

Here K = (1 + 3 A  + 3 . I f  C1 i s  chosen so  a s  t o  

make the asymptotic expansion of 

then the asymptotic expansion of vl + 1 ~ , ( l )  i s  propor t iona l  t o  

q 1 ( l )  orthogonal t o  % ’  

Thus t h e  agreement between the two s e r i e s  (3) and (3a) i s  a l s o  

asymptotic. 

I n  t h i s  example i t  is evident  from the  complicated na ture  of 

F1 thgl: a fu r the r  i t e r a t i o n  based on the  pe r tu rba t ion  

would be imprac t ica l .  4 8 (vl - e l ( ’ )  F1 (1 + ;h2 Flf-’ -. 1 
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V. EXAMPLE: THE PERTURBED, LINEAR HARMONIC OSCILLATOB. 
I 2  

Another simple example i s  the linear harmonic osc i l l a tor  i n  its 

ground s tate ,  perturbed by addition of 

Using atomic units ,  and taking the unperturbed force constant t o  be 

iC t9  the force constant. 

unity 3 

7 
.. 

The exact energy and wave function of the perturbed system are 



Q 16 

In contrast to  the perturbed hydrogen example, l e t  us normalize 

< Y;': qe) = 0. yo( ' )  so 4s to be orthogonal t o  ye ; that i s  

Subject to t h i s  condition, solution of Eq.  (8) y ie lds  

or 

whence 

Now, the FOPIM equation i s  h,y  0 ,  J with 
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The new perturbation is 

. Tbe first integration of Eq. (8a) gives 

with 

c 

.- 
e 

For tunate l y  the 

does not appear 

an (2) are such that Jo = f n  f / i  erf(s) 
- 

i n  Eq. (48). Otherwise e *z [*e- %zdy dt 
1 '  

and related transcendentals would occur i n  F 

Solution of Eq. (8a) yields 

with 

b, 4 - A!- 
A = - 4  32 32 SI 2 

(51) i 
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The constant  C1 i s  chosen so as  t o  

funct ion i n  asymptotic agreement with Eq. 

t h a t  is, by the  condi t ion <y , y  >=O, it 1 

make 

(40) 

H e r  e 

t he  FOPIM wave 

through t h i r d  order ;  

and i n  eva lua t ion  of 

(31 the  energies  €:'and e ,  , one encounters i n t e g r a l s  which lead t o  

t ranscendental  funct ions of the  per turba t ion  parameter 3 . The 

i n t e g r a l s  a r e  of th ree  types : 

I 
1 @e- 
-@ 

I n  order t o  express the  d e f i n i t e  i n t e g r a l s  as power s e r i e s  i n  2 , 
one must expand the integrands by use of the  expansions 

and 

2 4 2  I b  
which converge for  X'G < \ O r  -x +# The 

Gaussian weight f ac to r  assures  c o r r e c t  values for  the  d e f i n i t e  

i n t eg ra l s  i n  the  l i m i t  of small per turba t ion .  



Thus 

6 & + - * e *  J 281 
44 f ,S20  

(54) 

The wave function obtained by the FOPM procedure is  

Expansion of  the logarithm gives 

19 

c 



1 
20 

Thus q2 i t 3  in  asymptotic agreement with through third order. 

Now, the approximate energy for the original  perturbed system Is 

. 

This agrees with E q .  (39) through seventh order but the eighth order 
7 

term is  an upper bound to the correct value. 

c 
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